(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
O(0) → 0
+(0, x) → x
+(x, 0) → x
+(O(x), O(y)) → O(+(x, y))
+(O(x), I(y)) → I(+(x, y))
+(I(x), O(y)) → I(+(x, y))
+(I(x), I(y)) → O(+(+(x, y), I(0)))
*(0, x) → 0
*(x, 0) → 0
*(O(x), y) → O(*(x, y))
*(I(x), y) → +(O(*(x, y)), y)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
+(I(x), I(y)) →+ O(+(+(x, y), I(0)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / I(x), y / I(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
O(0') → 0'
+'(0', x) → x
+'(x, 0') → x
+'(O(x), O(y)) → O(+'(x, y))
+'(O(x), I(y)) → I(+'(x, y))
+'(I(x), O(y)) → I(+'(x, y))
+'(I(x), I(y)) → O(+'(+'(x, y), I(0')))
*'(0', x) → 0'
*'(x, 0') → 0'
*'(O(x), y) → O(*'(x, y))
*'(I(x), y) → +'(O(*'(x, y)), y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
*'They will be analysed ascendingly in the following order:
+' < *'
(8) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
Generator Equations:
gen_0':I2_0(0) ⇔ 0'
gen_0':I2_0(+(x, 1)) ⇔ I(gen_0':I2_0(x))
The following defined symbols remain to be analysed:
+', *'
They will be analysed ascendingly in the following order:
+' < *'
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':I2_0(
n4_0),
gen_0':I2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
+'(gen_0':I2_0(0), gen_0':I2_0(0))
Induction Step:
+'(gen_0':I2_0(+(n4_0, 1)), gen_0':I2_0(+(n4_0, 1))) →RΩ(1)
O(+'(+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)), I(0'))) →IH
O(+'(*3_0, I(0')))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
Lemmas:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':I2_0(0) ⇔ 0'
gen_0':I2_0(+(x, 1)) ⇔ I(gen_0':I2_0(x))
The following defined symbols remain to be analysed:
*'
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':I2_0(
n40533_0),
gen_0':I2_0(
0)) →
gen_0':I2_0(
0), rt ∈ Ω(1 + n40533
0)
Induction Base:
*'(gen_0':I2_0(0), gen_0':I2_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':I2_0(+(n40533_0, 1)), gen_0':I2_0(0)) →RΩ(1)
+'(O(*'(gen_0':I2_0(n40533_0), gen_0':I2_0(0))), gen_0':I2_0(0)) →IH
+'(O(gen_0':I2_0(0)), gen_0':I2_0(0)) →RΩ(1)
+'(0', gen_0':I2_0(0)) →RΩ(1)
gen_0':I2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
Lemmas:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I2_0(n40533_0), gen_0':I2_0(0)) → gen_0':I2_0(0), rt ∈ Ω(1 + n405330)
Generator Equations:
gen_0':I2_0(0) ⇔ 0'
gen_0':I2_0(+(x, 1)) ⇔ I(gen_0':I2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
Lemmas:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
*'(gen_0':I2_0(n40533_0), gen_0':I2_0(0)) → gen_0':I2_0(0), rt ∈ Ω(1 + n405330)
Generator Equations:
gen_0':I2_0(0) ⇔ 0'
gen_0':I2_0(+(x, 1)) ⇔ I(gen_0':I2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
O(
0') →
0'+'(
0',
x) →
x+'(
x,
0') →
x+'(
O(
x),
O(
y)) →
O(
+'(
x,
y))
+'(
O(
x),
I(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
O(
y)) →
I(
+'(
x,
y))
+'(
I(
x),
I(
y)) →
O(
+'(
+'(
x,
y),
I(
0')))
*'(
0',
x) →
0'*'(
x,
0') →
0'*'(
O(
x),
y) →
O(
*'(
x,
y))
*'(
I(
x),
y) →
+'(
O(
*'(
x,
y)),
y)
Types:
O :: 0':I → 0':I
0' :: 0':I
+' :: 0':I → 0':I → 0':I
I :: 0':I → 0':I
*' :: 0':I → 0':I → 0':I
hole_0':I1_0 :: 0':I
gen_0':I2_0 :: Nat → 0':I
Lemmas:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':I2_0(0) ⇔ 0'
gen_0':I2_0(+(x, 1)) ⇔ I(gen_0':I2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':I2_0(n4_0), gen_0':I2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(22) BOUNDS(n^1, INF)